Medical and Pharmaceutical Biotechnology master degree programme
Looking for an internationally respected master programme that will open up exciting career opportunities in the pharmaceutical industry and research? Potential employers hold our Medical and Pharmaceutical Biotechnology programme in high regard thanks its broad curriculum.
On the master programme you enhance your methods-based and problem-solving competencies, putting you in a position to overcome the challenges associated with developing and producing innovative treatments for cancer, autoimmune conditions and neurodegenerative diseases. You use cutting-edge and interdisciplinary methods, such as culturing “mini tumours” to help predict the effects of cancer treatments.
The degree programme: Master of Science in Engineering (MSc)
Our four-semester, English-language Medical and Pharmaceutical Biotechnology master degree programme is designed to provide you with extensive medical biotechnology knowledge and expertise in biotech product development and manufacturing.
An interdisciplinary approach is the key to success in biotechnology. To this end, you build on your knowledge of natural sciences, medical and engineering aspects. You also enhance your understanding of quality assurance frameworks, as well as learning how to combine knowledge from all of these disciplines.
The curriculum also features current trends and the latest developments: for instance, you use cutting-edge technologies, such as shotgun proteomics, to carry out a computerised bioinformatic analysis of all of a cell’s proteins under normal and pathological conditions.
Lecturers from European universities, international speakers from the pharmaceutical industry and plenty of lab work ensure that the programme has a strong practical focus and is aligned with the requirements of industry. When you graduate, you can choose from a wide range of career paths – the international nature of the programme opens up opportunities in the domestic and international job markets.
A particularly attractive option is the double degree we offer in conjunction with the Linköping University in Sweden. Besides obtaining a master of science at IMC Krems, you will also be accredited with completing the Experimental and Medical Biosciences programme at our partner institution.
After completing your degree, you will be able start building a career in the international biotechnology industry or on a doctoral programme.
Programme director Harald Hundsberger
A formula for success: theoretical knowledge + practical experience
The programme is built on three pillars.
Advanced courses
Semesters 1-2
While the Medical and Pharmaceutical Biotechnology bachelor programme has a strong focus on the natural sciences, on the master programme the emphasis shifts to the methods-based and problem-solving skills required in the field.
In the first two semesters, you build on the knowledge you acquired on our bachelor degree or another related programme. Modules include Health, Disease and Therapeutical Strategies, Process Design, Bioprocess Technology and Analytical Methods in Life Sciences. You also start preparing for your research semester in semester 2.
On top of this, the Institute of Biotechnology hosts its annual Life Science Meeting, which is designed to be a very broad-based scientific conference. There’s always an exciting international atmosphere at this event, where you’ll benefit from the insights of globally respected scientists from research and industry. The programme also features presentations by our students and graduates.
The electives
Semester 3
In semester 3 you have the opportunity to tailor your degree according to your specific interests. You select one of two electives: Bioprocess Engineering or Advanced Therapeutics Development.
Both of these will give you an overview of the current research landscape: you learn about numerous research projects connected to your specialism and the Institute of Biotechnology’s research focuses.
This is a fantastic opportunity to become an expert in your chosen field: the elective you select will help give your professional profile a sharper focus. Ideally, in the next semester you will choose a research topic and internship placement linked to your specialism.
The research semester
Semester 4
The Applied Research Semester (ARTS) is a core element of the master programme. You spend at least 22 weeks at a respected biotechnology company or research facility in Austria or abroad. Examples include Massachusetts Institute of Technology (MIT) in the United States or Karolinska Institutet in Sweden. The focus of your work will be a project that forms the basis for your master thesis.
The research semester is timetabled for the final semester so you can draw on all the knowledge you have acquired across the full range of disciplines. This also gives you maximum flexibility in terms of completing your thesis – you’re able plan according to the requirements of the project.
After your research semester, you only have to return to university to take your final master examination. So if you’re offered a permanent job by your internship provider, this means there’ll be nothing standing in your way.
Curriculum
What can you expect from your studies? The curriculum provides an overview.
Click on the individual courses for further information.
Course | SWS | ECTS |
---|---|---|
Health, Disease and Therapeutical Strategies | ||
Immunology | 2 | 3 |
Immunology
Module:
Health, Disease and Therapeutical Strategies
Root module:
Health, Disease and Therapeutical Strategies
Semester: 1
Course code:
IMM1VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Hallmarks of Cancer | 1 | 1 |
Hallmarks of Cancer
Module:
Health, Disease and Therapeutical Strategies
Root module:
Health, Disease and Therapeutical Strategies
Semester: 1
Course code:
HOC1VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Molecular Mechanisms of Ageing | 1 | 1 |
Molecular Mechanisms of Ageing
Module:
Health, Disease and Therapeutical Strategies
Root module:
Health, Disease and Therapeutical Strategies
Semester: 1
Course code:
MMA1VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Developmental Biology | 1 | 1 |
Developmental Biology
Module:
Health, Disease and Therapeutical Strategies
Root module:
Health, Disease and Therapeutical Strategies
Semester: 1
Course code:
DBIO1VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Bioethics | ||
Bioethics | 1 | 1 |
Bioethics
Module:
Bioethics
Root module:
Bioethics
Semester: 1
Course code:
BETH1WK
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Process Design | ||
Equipment and Production Design | 2 | 3 |
Equipment and Production Design
Module:
Process Design
Root module:
Process Design
Semester: 1
Course code:
EPD1VO
Contact hours per week:
2
ECTS: 3
Course Content:
Students independently complete exercises on media preparation planning, calculation of parameters for reaction kinetics, sterilisation times and microorganism kill rates, and for the efficiency of virus removal steps, as well as preparing sampling plans using the kinetics data to compile batch records.
Course outcome:
Upon completion of this course students are able to:
| ||
Standardization | 1 | 2 |
Standardization
Module:
Process Design
Root module:
Process Design
Semester: 1
Course code:
ST1VO
Contact hours per week:
1
ECTS: 2
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Biomedical Regulatiuons | ||
Legislation for Drugs and Medical Devices | 2 | 3 |
Legislation for Drugs and Medical Devices
Module:
Biomedical Regulatiuons
Root module:
Biomedical Regulatiuons
Semester: 1
Course code:
LDMD1VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Bioprocess Technology | ||
Upstream and Downstream Processing | ||
Upstream Processing | 1 | 2 |
Upstream Processing
Module:
Upstream and Downstream Processing
Root module:
Bioprocess Technology
Semester: 1
Course code:
UP1VO
Contact hours per week:
1
ECTS: 2
Course Content:
Students learn about the processes involved in preparing and managing fermentation with microbiological organisms and mammalian cells. The lectures will cover: Students perform calculations of parameters for reaction kinetics, feeding and heat dissipation based on typical sets of information given in the industrial environment.
Course outcome:
Upon completion of this course students are able to:
| ||
Downstream Processing | 1 | 2 |
Downstream Processing
Module:
Upstream and Downstream Processing
Root module:
Bioprocess Technology
Semester: 1
Course code:
DP1VO
Contact hours per week:
1
ECTS: 2
Course Content:
Students learn about the processes involved in preparing and managing downstream processes of recombinant products comming from microbiological organisms and mammalian cells. The lectures will cover:
Course outcome:
Upon completion of this course students are able to:
| ||
Recombinant Protein Production - Theory | 2 | 3 |
Recombinant Protein Production - Theory
Module:
Bioprocess Technology
Root module:
Bioprocess Technology
Semester: 1
Course code:
RPPT1ILV
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Recombinant Protein Production - Laboratory | 4 | 4 |
Recombinant Protein Production - Laboratory
Module:
Bioprocess Technology
Root module:
Bioprocess Technology
Semester: 1
Course code:
RPPL1LB
Contact hours per week:
4
ECTS: 4
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Research Project in Industry and Master Thesis | ||
Research Project - Preparation | 1 | 1 |
Research Project - Preparation
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 1
Course code:
RPP1WK
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Focal Subject - Elective 1: Bioprocess Engineering | ||
Elective 1: Bioprocess Engineering | ||
Process Control and Process Online Monitoring | 2 | 3 |
Process Control and Process Online Monitoring
Module:
Elective 1: Bioprocess Engineering
Root module:
Elective 1: Bioprocess Engineering
Semester: 1
Course code:
PCPOM1VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Focal Subject - Elective 2: Advanced Therapeutics Development | ||
Elective 2: Advanced Therapeutics Development | ||
Drug Discovery Systems | 2 | 3 |
Drug Discovery Systems
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 1
Course code:
DDS1VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
|
Course | SWS | ECTS |
---|---|---|
Integrative Methods in Biotechnology | ||
Biostatistics and Trend Analysis | 1 | 2 |
Biostatistics and Trend Analysis
Module:
Integrative Methods in Biotechnology
Root module:
Integrative Methods in Biotechnology
Semester: 2
Course code:
BTA2ILV
Contact hours per week:
1
ECTS: 2
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Systems Biology | 1 | 1 |
Systems Biology
Module:
Integrative Methods in Biotechnology
Root module:
Integrative Methods in Biotechnology
Semester: 2
Course code:
SBIO2ILV
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Structural Bioinformatics and Drug Design | 2 | 2 |
Structural Bioinformatics and Drug Design
Module:
Integrative Methods in Biotechnology
Root module:
Integrative Methods in Biotechnology
Semester: 2
Course code:
SBDD2VO
Contact hours per week:
2
ECTS: 2
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Analytical Methods in Life Science | ||
Bioanalytics Laboratory | 2 | 3 |
Bioanalytics Laboratory
Module:
Analytical Methods in Life Science
Root module:
Analytical Methods in Life Science
Semester: 2
Course code:
BAL2LB
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of the course, students are able to:
| ||
Personalized Medicine Laboratory | 2 | 3 |
Personalized Medicine Laboratory
Module:
Analytical Methods in Life Science
Root module:
Analytical Methods in Life Science
Semester: 2
Course code:
PML2LB
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Analytical Methods in Biomedicine | 2 | 3 |
Analytical Methods in Biomedicine
Module:
Analytical Methods in Life Science
Root module:
Analytical Methods in Life Science
Semester: 2
Course code:
AMB2VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Fundamentals in Pharmaceutical Sciences | ||
Pharmacokinetics and Pharmacodynamics | 2 | 3 |
Pharmacokinetics and Pharmacodynamics
Module:
Fundamentals in Pharmaceutical Sciences
Root module:
Fundamentals in Pharmaceutical Sciences
Semester: 2
Course code:
PP2VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Quality Management and Regulations in Biotechnology | ||
GLP, GMP and Risk Assessment | ||
GLP and GMP Regulations | 1 | 1 |
GLP and GMP Regulations
Module:
GLP, GMP and Risk Assessment
Root module:
Quality Management and Regulations in Biotechnology
Semester: 2
Course code:
GGR2VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Risk Assessment | 1 | 1 |
Risk Assessment
Module:
GLP, GMP and Risk Assessment
Root module:
Quality Management and Regulations in Biotechnology
Semester: 2
Course code:
RA2VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Quality Management Systems | 1 | 1 |
Quality Management Systems
Module:
Quality Management and Regulations in Biotechnology
Root module:
Quality Management and Regulations in Biotechnology
Semester: 2
Course code:
QMS2VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Pharmaceutical Project Management | ||
Project and Portfolio Management | 1 | 1 |
Project and Portfolio Management
Module:
Pharmaceutical Project Management
Root module:
Pharmaceutical Project Management
Semester: 2
Course code:
PPMGT2VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Clinical Studies and GCP | 1 | 1 |
Clinical Studies and GCP
Module:
Pharmaceutical Project Management
Root module:
Pharmaceutical Project Management
Semester: 2
Course code:
CSGCP2VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Entrepreneurship in Life Sciences | 2 | 2 |
Entrepreneurship in Life Sciences
Module:
Pharmaceutical Project Management
Root module:
Pharmaceutical Project Management
Semester: 2
Course code:
ELS2ILV
Contact hours per week:
2
ECTS: 2
Course Content:
Students will be introduced to the business side of setting up a new company and key management processes.
Cost accounting:
Management control:
Course outcome:
Upon completion of this course students are able to:
| ||
Focal Subject - Elective 1: Bioprocess Engineering | ||
Elective 1: Bioprocess Engineering | ||
Fermentation and Scale Up - Scale Down Techniques | ||
Fermentation of Complex Host Systems | 1 | 1 |
Fermentation of Complex Host Systems
Module:
Fermentation and Scale Up - Scale Down Techniques
Root module:
Elective 1: Bioprocess Engineering
Semester: 2
Course code:
FCHS2VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Scale Up - Scale Down Techniques | 1 | 2 |
Scale Up - Scale Down Techniques
Module:
Fermentation and Scale Up - Scale Down Techniques
Root module:
Elective 1: Bioprocess Engineering
Semester: 2
Course code:
SUSDT2VO
Contact hours per week:
1
ECTS: 2
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Fermentation Technology - Laboratory I | 2 | 3 |
Fermentation Technology - Laboratory I
Module:
Elective 1: Bioprocess Engineering
Root module:
Elective 1: Bioprocess Engineering
Semester: 2
Course code:
FTLI2LB
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Focal Subject - Elective 2: Advanced Therapeutics Development | ||
Elective 2: Advanced Therapeutics Development | ||
Advanced Therapeutic Developement Laboratory I | 2 | 3 |
Advanced Therapeutic Developement Laboratory I
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 2
Course code:
ATDLI2LB
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Pathophysiology and Molecular Therapies | 2 | 3 |
Pathophysiology and Molecular Therapies
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 2
Course code:
PMT2VO
Contact hours per week:
2
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
|
Course | SWS | ECTS |
---|---|---|
Focal Subject - Elective 1: Bioprocess Engineering | ||
Elective 1: Bioprocess Engineering | ||
Equipment Test and Process Validation | 2 | 4 |
Equipment Test and Process Validation
Module:
Elective 1: Bioprocess Engineering
Root module:
Elective 1: Bioprocess Engineering
Semester: 3
Course code:
ETPV3VO
Contact hours per week:
2
ECTS: 4
Course Content:
<ul> <li>Fundamentals of equipment, test and process validation based on legal guidelines and using practical examples</li> <li>Design qualification</li> <li>User requirements specification</li> <li>Functional specifications</li> <li>Installation qualification (IQ), drawing up IQ plans</li> <li>Operational qualification (OQ)</li> <li>Drawing up OQ plans</li> <li>Performance qualification</li> <li>Retrospective qualification</li> <li>Requalification</li> <li>Maintaining qualification status</li> <li>Process validation</li> <li>Defining the scope of a validation, risk analysis</li> <li>Validation master plan and validation matrix</li> <li>Cleaning validation</li> <li>Optimising cleaning procedures and drafting cleaning policies</li> <li>Cleaning validation master plan</li> <li>Defining the scope of validation</li> <li>Acceptance criteria, computer validation</li> <li>Prospective and retrospective validation, validation master plan</li> <li>Operating computerised systems</li> </ul>
Course outcome:
Upon completion of this course students are able to:
| ||
Fermentation Technology - Laboratory II | 5 | 11 |
Fermentation Technology - Laboratory II
Module:
Elective 1: Bioprocess Engineering
Root module:
Elective 1: Bioprocess Engineering
Semester: 3
Course code:
FTLII3LB
Contact hours per week:
5
ECTS: 11
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Focal Subject - Elective 2: Advanced Therapeutics Development | ||
Elective 2: Advanced Therapeutics Development | ||
Stem Cells, Gene Therapy and Regenerative Medicine | 1 | 3 |
Stem Cells, Gene Therapy and Regenerative Medicine
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 3
Course code:
SCGTRM3VO
Contact hours per week:
1
ECTS: 3
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Immunology Based Therapies | 1 | 1 |
Immunology Based Therapies
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 3
Course code:
IBT3VO
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Advanced Therapeutic Developement Laboratory II | 5 | 11 |
Advanced Therapeutic Developement Laboratory II
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 3
Course code:
ATDLII3LB
Contact hours per week:
5
ECTS: 11
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Research Project in Industry and Master Thesis | ||
Master Thesis - Part I | 1 | 4 |
Master Thesis - Part I
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 3
Course code:
MTI3DA
Contact hours per week:
1
ECTS: 4
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Master Thesis - Coaching Seminar I | 1 | 1 |
Master Thesis - Coaching Seminar I
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 3
Course code:
MTCI3TU
Contact hours per week:
1
ECTS: 1
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Research Project | 1 | 10 |
Research Project
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 3
Course code:
RP3SE
Contact hours per week:
1
ECTS: 10
Course Content:
Course outcome:
Upon completion of this course students are able to:
|
Course | SWS | ECTS |
---|---|---|
Focal Subject - Elective 1: Bioprocess Engineering | ||
Elective 1: Bioprocess Engineering | ||
Current Issues in Bioprocess Engineering | 1 | 2 |
Current Issues in Bioprocess Engineering
Module:
Elective 1: Bioprocess Engineering
Root module:
Elective 1: Bioprocess Engineering
Semester: 4
Course code:
CIBE4SE
Contact hours per week:
1
ECTS: 2
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Focal Subject - Elective 2: Advanced Therapeutics Development | ||
Elective 2: Advanced Therapeutics Development | ||
Current Issues in Advanced Therapeutic Developement | 1 | 2 |
Current Issues in Advanced Therapeutic Developement
Module:
Elective 2: Advanced Therapeutics Development
Root module:
Elective 2: Advanced Therapeutics Development
Semester: 4
Course code:
CIATD4SE
Contact hours per week:
1
ECTS: 2
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Research Project in Industry and Master Thesis | ||
Master Thesis - Part II | 1 | 18 |
Master Thesis - Part II
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 4
Course code:
MTII4DA
Contact hours per week:
1
ECTS: 18
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Master Thesis - Coaching Seminar II | 1 | 6 |
Master Thesis - Coaching Seminar II
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 4
Course code:
MTCII4TU
Contact hours per week:
1
ECTS: 6
Course Content:
Course outcome:
Upon completion of this course students are able to:
| ||
Master Exam | 0 | 4 |
Master Exam
Module:
Research Project in Industry and Master Thesis
Root module:
Research Project in Industry and Master Thesis
Semester: 4
Course code:
MEX4AP
Contact hours per week:
0
ECTS: 4
Course Content:
Course outcome:
Upon completion of this course students are able to:
|
Electives
Choose your own focus areas: you select one of two electives on the master programme.
Bioprocess Engineering
This elective prepares you for work in the development and manufacture of pharmaceutical products.
Today, these products are frequently produced using biopharmaceutical techniques, by means of fermentation in large bioreactors. This requires genetically modified microorganisms, which are cultured in very high cell densities to manufacture the desired product. Such products range from medicines to ingredients for nutritional supplements, as well as substances like bioethanol.
If you take this elective, you will gain detailed insights into bioprocess engineering, process automation, and especially fermentation. This expertise will give you the skills required to take on positions at all types of biotech company – large pharmaceutical businesses as well as small start-ups specialising in innovative products such as nutraceuticals. You’ll be able to contribute in a wide range of areas encompassing the development, testing and large-scale manufacturing of brand new substances.
In the bioprocess engineering lectures and practicals you’ll use cutting-edge analytical techniques, ranging from simple online methods – which you’ll also evaluate – through to liquid LC-MS for proteomics work.
Advanced Therapeutics Development
This elective takes an in-depth look at research into active ingredients and their mechanisms. It lays the foundations for a PhD in a related area or a job in an R&D department in the biotech industry.
Medical biotechnology has seen some major breakthroughs in recent years, such as immune checkpoint inhibitors (PD-1) for the treatment of advanced melanomas. Small interfering RNA (siRNA) molecules are currently being tested for use in potential treatments for cancers and viral diseases, which are expected to come on to the market in the next few years.
High-throughput technologies in areas such as next-generation sequencing (NGS), mass spectrometry and imaging are becoming increasingly important in the development of new treatments. This means there is going to be an ever greater focus on linking together large data sets, and integrating the clinical results of treatment.
The Advanced Therapeutic Development elective module gives you a solid grounding in these areas. This is reinforced with a lab-based course linked to the elective, in which you reproduce the early stages of the drug development process. A journal club on topical biotechnology questions rounds out the programme.
Newsletter & additional information
Do you need additional information? Subscribe to your personalised newsletter or order brochures about our courses.
Get additional information nowCareer paths
As a graduate of the Medical and Pharmaceutical Biotechnology master programme you will be especially well placed to assume positions at pharmaceutical and biotechnology companies or medical research institutes.
You can also opt to take a PhD at a university in Austria or abroad. We have PhD cooperation agreements with Danube University Krems and the University of Veterinary Medicine, Vienna. These agreements ensure that admission to the PhD programmes at these institutions is a straightforward process.
The professional areas open to graduates include:
10 good reasons
What makes us special? We are more than happy to tell you about the aspects of our university, which we are especially proud of.
Krems
Friendly and cosmopolitan: The city attracts students from all over the world, who come to study, research and work together.
Service centers
Our university has removed a host of administrative hurdles, leaving you free to concentrate fully on your studies.
Advisory Service
Do you have questions regarding our degree programmes or the application? Contact our Prospective Student Advisory Service.
Opinions: Medical and Pharmaceutical Biotechnology
Click through the videos of the degree programme.
Our team
Get to know the core team of our master degree programme Medical and Pharmaceutical Biotechnology.
Prof.(FH) Priv.-Doz. Mag. Dr. Harald Hundsberger
Head of Institute Biotechnology / Programme Director Medical and Pharmaceutical Biotechnology
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Recombinant Protein Expression, Cell Culture Models, Peptide Engineering,
- Instrument Development
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Extrazelluläre Vesikel aus dem Hoffa-Fettkörper - ein neuer Ansatz der Knorpelregeneration?
Department of Life Sciences
-
Testung von rekombinanten polyklonalen Antikörperfragmenten gegen Gluten-Peptide
Project Leader, Department of Life Sciences
-
Die Rolle von NFR2 in der Melanomprogression - Einblicke in die Mechanismen von Metastasen
Project Leader, Department of Life Sciences
-
Etablierung der molekularen Toxikologie für rasche, frühzeitige sowie sensitive Toxizitätsbestimmungen und Biokompatibilität
Project Leader, Department of Life Sciences
-
Entwicklung einer Design-Pipeline für innovative Protein-Protein-Interaktionshemmer
Department of Life Sciences
-
MEMESA – Metastasierendes Melanom Spezifische Antikörper
Project Leader, Department of Life Sciences
-
AdsorbTech: Entwicklung einer neuen Technologieplattform für Peptid-basierte therapeutische Apheresesysteme
Project Leader, Department of Life Sciences
-
Entwicklung neuer immunregulierender Peptide und geschlechtsspezifischer organotypischer Zellmodelle für humane Sepsis
Department of Life Sciences
-
Entwicklung neuer Methoden zur Verbesserung von immuntherapeutischen Verfahren in der Onkologie
Department of Life Sciences
-
Funktionale Validierung prädiktiver Biomarker für zielgerichtete Krebstherapien
Department of Life Sciences
-
Etablierung innovativer, vaskulärer Äquivalente zur Entwicklung von Detektionsmodulen für Hochdurchsatz-Verfahren und zur Entwicklung von anti-entzündlichen Peptiden
Project Leader, Department of Life Sciences
-
Etablierung innovativer humaner Tumor-Mimetika für das Screening von bioaktiven Wirkstoffen
Department of Life Sciences
-
Biopharm - Isolation bioaktiver Stoffe aus Cyanobakterien
Project Leader, Department of Life Sciences
-
Zellbasierte Testsysteme für bioaktive Substanzen
Project Leader, Department of Life Sciences
-
[1788]
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717 -
[1005]
Kinslechner, K., Schütz, B., Pistek, M., Rapolter, P., Weitzenböck, H. P., Hundsberger, H., Mikulits, W., Grillari, J., Röhrl, C., Hengstschläger, M., Stangl, H., & Mikula, M. (2019): Loss of SR-BI Down-Regulates MITF and Suppresses Extracellular Vesicle Release in Human Melanoma. International journal of molecular sciences, 20(5): 1063.
Doi: https://doi.org/10.3390/ijms20051063 -
[895]
Jacobi, N., Seeboeck, R., Hofmann, E., Schweiger, H., Smolinska, V., Mohr, T., Boyer, A., Sommergruber, W., Lechner, P., Pichler-Huebschmann, C., Önder, K., Hundsberger, H., Wiesner, C., & Eger, A. (2017): Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget, 8(64): 107423–107440.
Doi: https://doi.org/10.18632/oncotarget.22475 -
[671]
Hundsberger, H., Önder, K., Schuller-Götzburg, P., Virok, D. P., Herzog, J., & Rid, R. (2017): Assembly and use of high-density recombinant peptide chips for large-scale ligand screening is a practical alternative to synthetic peptide libraries. BMC genomics, 18(1): 450.
Doi: https://doi.org/10.1186/s12864-017-3814-3 -
[900]
Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
-
[657]
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435 -
[879]
Volk, K., Breunig, S. D., Rid, R., Herzog, J., Bräuer, M., Hundsberger, H., Klein, C., Müller, N., & Önder, K. (2017): Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biological chemistry, 398(1): 125-133.
Doi: https://doi.org/10.1515/hsz-2016-0185 -
[600]
Schütz, B., Koppensteiner, A., Schörghofer, D., Kinslechner, K., Timelthaler, G., Eferl, R., Hengstschläger, M., Missbichler, A., Hundsberger, H., & Mikula, M. (2016): Generation of metastatic melanoma specific antibodies by affinity purification. Scientific reports, 6: 37253.
Doi: https://doi.org/10.1038/srep37253 -
[579]
Al-Harthy, T., Zoghaib, W. M., Pflüger, M., Schöpel, M., Önder, K., Reitsammer, M., Hundsberger, H., Stoll, R., & Abdel-Jalil, R. (2016): Design, Synthesis, and Cytotoxicity of 5-Fluoro-2-methyl-6-(4-aryl-piperazin-1-yl) Benzoxazoles. Molecules, 21(10): 1290.
Doi: https://doi.org/10.3390/molecules21101290 -
[473]
Al-Harthy, T., Abdel-Jalil, R., Zoghaib, W., Pflüger, M., Hofmann, E., & Hundsberger, H. (2016): Design and synthesis of benzothiazole schiff bases of potential antitumor activity. Heterocycles, 92(7): 1282-1292.
Doi: https://doi.org/10.3987/COM-16-13471 -
[359]
Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7 -
[557]
Jacobi, N., Smolinska, V., Stierschneider, A., Klein, C., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2016): Development of organotypic cancer models for the identification of individualized cancer therapies. In FH des BFI Wien (Hrsg.), Online-Tagungsband FHK Forschungsforum 2016. Wien: FFH.
-
[360]
Herzog, J., Rid, R., Wagner, M., Hundsberger, H., Eger, A., Bauer, J., & Önder, K. (2015): Whole-transcriptome gene expression profiling in an epidermolysis bullosa simplex Dowling-Meara model keratinocyte cell line uncovered novel, potential therapeutic targets and affected pathways. BMC research notes, 8: 785.
Doi: https://doi.org/10.1186/s13104-015-1783-7 -
[553]
Kreiseder, B., Holper-Schichl, Y. M., Muellauer, B., Jacobi, N., Pretsch, A., Schmid, J. A., de Martin, R., Hundsberger, H., Eger, A., & Wiesner, C. (2015): Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PloS one, 10(3): e0119402.
Doi: https://doi.org/10.1371/journal.pone.0119402 -
[535]
Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P., & Wiesner, C. (2014): Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS one, 9(6): e97929.
Doi: https://doi.org/10.1371/journal.pone.0097929 -
[371]
Rid, R., Hundsberger, H., & Onder, K. (2014): Compound screening and transcriptional profiling in human primary keratinocytes: a brief guideline. Methods in molecular biology, 1195: 99-109.
Doi: https://doi.org/10.1007/7651_2013_50 -
[534]
Kapuścik, A., Hrouzek, P., Kuzma, M., Bártová, S., Novák, P., Jokela, J., Pflüger, M., Eger, A., Hundsberger, H., Kopecký, J. (2013): Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chembiochem : a European journal of chemical biology, 14(17): 2329-2337.
Doi: https://doi.org/10.1002/cbic.201300246 -
[533]
Rid, R., Herzog, J., Maier, R. H., Hundsberger, H., Eger, A., Hintner, H., Bauer, J. W., Onder, K. (2013): Real-time monitoring of relative peptide-protein interaction strengths in the yeast two-hybrid system. Assay and drug development technologies, 11(4): 269-275.
Doi: https://doi.org/10.1089/adt.2012.496 -
[842]
Rid, R., Wagner, M., Maier, C. J., Hundsberger, H., Hintner, H., Bauer, J. W., & Onder, K. (2013): Deciphering the calcitriol-induced transcriptomic response in keratinocytes: presentation of novel target genes. Journal of molecular endocrinology, 50(2): 131–149.
Doi: https://doi.org/10.1530/JME-11-0191 -
[1829]
Kreiseder, B., Orel, L., Bujnow, C., Buschek, S., Pflueger, M., Schuett, W., Hundsberger, H., de Martin, R., Wiesner, C. (2013): α‐Catulin downregulates E‐cadherin and promotes melanoma progression and invasion. International journal of cancer, 132(3): 521-530.
Doi: https://doi.org/10.1002/ijc.27698 -
[530]
Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316 -
[621]
Khare, V., Lyakhovich, A., Dammann, K., Lang, M., Borgmann, M., Tichy, B., Pospisilova, S., Luciani, G., Campregher, C., Evstatiev, R., Pflueger, M., Hundsberger, H., & Gasche, C. (2013): Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1. Biochemical Pharmacology, 85(2): 234-244.
Doi: https://doi.org/10.1016/j.bcp.2012.10.026 -
[529]
Maier, C., Maier, R., Rid, R., Trost, A., Hundsberger, H., Eger, A., Hintner, H., Bauer, J., Onder, K. (2012): PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling. BMC molecular biology, 13: 18.
Doi: https://doi.org/10.1186/1471-2199-13-18 -
[527]
Amatschek, S., Lucas, R., Eger, A., Pflueger, M., Hundsberger, H., Knoll, C., Grosse-Kracht, S., Schuett, W., Koszik, F., Maurer, D., Wiesner, C. (2011): CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. British journal of cancer, 104(3): 469-479.
Doi: https://doi.org/10.1038/sj.bjc.6606056 -
[601]
Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D., Wendel, A., Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in Bioscience, 13: 5374-86.
Doi: https://doi.org/10.2741/3087 -
[1828]
Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D. N., Wendel, A., & Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in bioscience : a journal and virtual library, 13: 5374–5386.
Doi: https://doi.org/10.2741/3087 -
[1826]
Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
-
[622]
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
-
[1823]
Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385 -
[1822]
Lucas, R., Hundsberger, H., Pflueger, M., Fischer, B., Morel, D., Braun, C., Wendel, A., Chakraborty, T., Schuett, W., Wiesner, C., Hamacher, J. (2007): The Tumor Necrosis Factor-Derived TIP Peptide: A Potential Anti-Edema Drug. Letters in Drug Design & Discovery, 4(5): 336-340.
Doi: https://doi.org/10.2174%2F157018007780867816
Head of Institute Biotechnology / Programme Director Medical and Pharmaceutical Biotechnology
Prof.(FH) Priv.-Doz. Mag. Dr. Harald HundsbergerCore Competencies
Recombinant Protein Expression, Cell Culture Models, Peptide Engineering,Instrument Development
Hon.Prof.(FH) Mag. Alfred Siedl
Professor Department of Business
Institute Business Administration and Management- Statistics, Business Mathematics
- MS Office, SPSS, GeoGebra
- Betriebswirtschaft für das GesundheitswesenBachelor of Arts in Business / full-time
- Betriebswirtschaft für das GesundheitswesenBachelor of Arts in Business / part-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
- Tourism and Leisure ManagementBachelor of Arts in Business / full-time
Hon.Prof.(FH) Mag. Alfred SiedlSProfessor Department of BusinessProf.(FH) Mag. Dr. Christoph Wiesner
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Cell and Molecular Biology
- Drug Screening
- Project management
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Entwicklung einer optogenetisch kontrollierbaren MSC-Zelllinie für die präzise Regulation immunmodulatorischer Faktoren
Project Leader, Department of Life Sciences
-
Biomarker-basierte therapeutische Prävention von Knochenmetastasen beim Mammakarzinom: die phathophysiologische Rolle der endostalen Nische
Project Leader, Department of Life Sciences
-
Entwicklung leistungsfähiger Diagnostikverfahren und neuer Therapieansätze in Inflammation und Sepsis
Project Leader, Department of Life Sciences
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Life Sciences
-
Testung von rekombinanten polyklonalen Antikörperfragmenten gegen Gluten-Peptide
Department of Life Sciences
-
Zellbasierte Testsysteme für bioaktive Substanzen
Department of Life Sciences
-
[1788]
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717 -
[1316]
Sarne, V., Huter, S., Braunmueller, S., Rakob, L., Jacobi, N., Kitzwögerer, M., Wiesner, C., Obrist, P., & Seeboeck, R. (2020): Promoter Methylation of Selected Genes in Non-Small-Cell Lung Cancer Patients and Cell Lines. International journal of molecular sciences, 21(13): 4595.
Doi: https://doi.org/10.3390/ijms21134595 -
[895]
Jacobi, N., Seeboeck, R., Hofmann, E., Schweiger, H., Smolinska, V., Mohr, T., Boyer, A., Sommergruber, W., Lechner, P., Pichler-Huebschmann, C., Önder, K., Hundsberger, H., Wiesner, C., & Eger, A. (2017): Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget, 8(64): 107423–107440.
Doi: https://doi.org/10.18632/oncotarget.22475 -
[900]
Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
-
[657]
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435 -
[1833]
Genov, M., Kreiseder, B., Nagl, M., Wiesner, C. et al. (2016): Tetrahydroanthraquinone Derivative (±)-4-Deoxyaustrocortilutein Induces Cell Cycle Arrest and Apoptosis in Melanoma Cells via Upregulation of p21 and p53 and Downregulation of NF-kappaB. Journal of Cancer, 7(5): 555.
Doi: https://doi:10.7150/jca.13614 -
[1834]
Preisitsch, M., Niedermeyer, T., Heiden, SE., Neidhardt, I., Kumpfmueller, J., Wurster, M., Harmrolfs, K., Wiesner, C., Enke, H., Mueller, R., Mundt, S. (2016): Cylindrofridins A–C, Linear Cylindrocyclophane-Related Alkylresorcinols from the Cyanobacterium Cylindrospermum stagnale. Journal of natural products, 79(1): 106-115.
Doi: https://doi.org/10.1021/acs.jnatprod.5b00768 -
[1832]
Preisitsch, M., Heiden, SE., Beerbaum, M., Niedermeyer, T., Schneefeld, M., Herrmann, J., Kumpfmueller, J., Thuermer, A., Neidhardt, I., Wiesner, C., Daniel, R., Mueller, R., Bange, FC., Schmieder, P., Schweder, T., Mundt, S. (2016): Effects of halide ions on the carbamidocyclophane biosynthesis in Nostoc sp. CAVN2. Marine drugs, 14(1): 21.
Doi: https://doi.org/10.3390/md14010021 -
[1830]
Preisitsch, M., Harmrolfs, K., Pham, HT., Heidern, SE., Fuessl, A., Wiesner, C., Pretsch, A., Switecka-Hagenbruch, M., Niedermeyer, TH., Mueller, R., Mundt, S. (2015): Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of antibiotics, 68(9): 600-600.
Doi: https://doi.org/10.1038/ja.2015.79 -
[553]
Kreiseder, B., Holper-Schichl, Y. M., Muellauer, B., Jacobi, N., Pretsch, A., Schmid, J. A., de Martin, R., Hundsberger, H., Eger, A., & Wiesner, C. (2015): Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PloS one, 10(3): e0119402.
Doi: https://doi.org/10.1371/journal.pone.0119402 -
[1831]
Preisitsch, M., Harmrolfs, K., Pham, H., Heiden, SE., Fuessel, A., Wiesner, C., Pretsch, A., et al. (2015): Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of antibiotics, 68(3): 165-177.
Doi: https://doi.org/10.1038/ja.2014.118 -
[535]
Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P., & Wiesner, C. (2014): Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS one, 9(6): e97929.
Doi: https://doi.org/10.1371/journal.pone.0097929 -
[1829]
Kreiseder, B., Orel, L., Bujnow, C., Buschek, S., Pflueger, M., Schuett, W., Hundsberger, H., de Martin, R., Wiesner, C. (2013): α‐Catulin downregulates E‐cadherin and promotes melanoma progression and invasion. International journal of cancer, 132(3): 521-530.
Doi: https://doi.org/10.1002/ijc.27698 -
[530]
Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316 -
[527]
Amatschek, S., Lucas, R., Eger, A., Pflueger, M., Hundsberger, H., Knoll, C., Grosse-Kracht, S., Schuett, W., Koszik, F., Maurer, D., Wiesner, C. (2011): CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. British journal of cancer, 104(3): 469-479.
Doi: https://doi.org/10.1038/sj.bjc.6606056 -
[601]
Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D., Wendel, A., Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in Bioscience, 13: 5374-86.
Doi: https://doi.org/10.2741/3087 -
[1828]
Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D. N., Wendel, A., & Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in bioscience : a journal and virtual library, 13: 5374–5386.
Doi: https://doi.org/10.2741/3087 -
[1826]
Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
-
[622]
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
-
[1827]
Wiesner, C., Winsauer, G., Resch, U. et al. (2008): α-Catulin, a Rho signalling component, can regulate NF-κB through binding to IKK-β, and confers resistance to apoptosis. Oncogene , 27: 2159–2169.
Doi: https://doi.org/10.1038/sj.onc.1210863 -
[1823]
Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385 -
[1825]
Winter, D., Moser, J., Kriehuber, E., Wiesner, C., Knobler, R., Trautinger, F., Bombosi, P., Stingl, G., Petzelbauer, P., Rot, A., & Maurer, D. (2007): Down-modulation of CXCR3 surface expression and function in CD8+ T cells from cutaneous T cell lymphoma patients. Journal of immunology, 179(6): 4272-4282.
Doi: https://doi.org/10.4049/jimmunol.179.6.4272 -
[1822]
Lucas, R., Hundsberger, H., Pflueger, M., Fischer, B., Morel, D., Braun, C., Wendel, A., Chakraborty, T., Schuett, W., Wiesner, C., Hamacher, J. (2007): The Tumor Necrosis Factor-Derived TIP Peptide: A Potential Anti-Edema Drug. Letters in Drug Design & Discovery, 4(5): 336-340.
Doi: https://doi.org/10.2174%2F157018007780867816 -
[1821]
Hofer-Warbinek, R., Schmid, J.A., Mayer, H., Winsauer, G., Orel, L., Mueller, B., Wiesner, C., Binder, B.R., de Martin, R. (2004): A highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53. Cell Death & Differentiation, 11(12): 1317 - 1325.
Doi: https://doi.org/10.1038%2Fsj.cdd.4401502 -
[1820]
Wiesner, C., Hoeth, M., Binder, B.R., de Martin, R. (2002): A functional screening assay for the isolation of transcription factors. Nucleic Acids Research, 30(16): e80.
Doi: https://doi.org/10.1093/nar/gnf079 -
[1824]
Rohde, D., Wiesner, C., Graf, D. et al. (2000): Interstitial fluid pressure is increased in renal cell carcinoma xenografts. Urological Research, 28: 1-5.
Doi: https://doi.org/10.1007/s002400050001
Prof.(FH) Mag. Dr. Christoph WiesnerWProfessor Department of Life SciencesDr.rer.nat.techn. Georg Sixta
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Applied ChemistryBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
Dr.rer.nat.techn. Georg SixtaSProfessor Department of Life SciencesProf.(FH) DI Dominik Schild
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Fermentation development
- Biochemical Engineering
- Process engineering
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Applied ChemistryBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Project Leader, Department of Life Sciences
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Project Leader, Department of Life Sciences
-
Extremophiles
Department of Life Sciences
-
Co-Kultivierung von Mikroorganismen
Project Leader, Department of Life Sciences
-
Zellbasierte Testsysteme für bioaktive Substanzen
Department of Life Sciences
-
[1788]
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717 -
[1110]
Amer, H., Mimini, V., Schild, D., Rinner, U., Bacher, H., Potthast, A., Rosenau, T. (2019): Gram-scale economical synthesis of trans-coniferyl alcohol and its corresponding thiol. Holzforschung, 74(2): 197-202.
Doi: https://doi.org/10.1515/hf-2018-0297
Prof.(FH) DI Dominik SchildSProfessor Department of Life SciencesProf.(FH) Mag. Dana Mezricky
Professorin Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- GMP/GLP
- Molecular Biology
- Proteinchemistry / Immunology/ Biochemical Analytics Methods
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Life Sciences
-
Extremophiles
Department of Life Sciences
-
Co-Kultivierung von Mikroorganismen
Department of Life Sciences
-
[1329]
Čížková, M., Mezricky, P., Mezricky, D., Rucki, M., Zachleder, V., Vítová, M. (2020): Bioaccumulation of Rare Earth Elements from Waste Luminophores in the Red Algae, Galdieria phlegrea. Waste Biomass Valor.
Doi: https://doi.org/10.1007/s12649-020-01182-3 -
[1328]
Rezanka, T., Rezanka, M., Mezricky, D., Vítova, M. (2020): Lipidomic analysis of diatoms cultivated with silica nanoparticles. Phytochemistry, 177: 112452.
Doi: https://doi.org/10.1016/j.phytochem.2020.112452 -
[1020]
Čížková, M., Mezricky, D., Rucki, M., Tóth, T. M., Náhlík, V., Lanta, V., Bišová, K., Zachleder, V., & Vítová, M. (2019): Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules , 24(7): 1356.
Doi: https://doi.org/10.3390/molecules24071356 -
[352]
Řezanka, T., Kaineder, K., Mezricky, D., Řezanka, M., Bišová, K., Zachleder, V., & Vítová, M. (2016): The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynthesis Research, 130(1-3): 335-346.
Doi: https://doi.org/10.1007/s11120-016-0263-9
Prof.(FH) Mag. Dana MezrickyMProfessorin Department of Life SciencesDI (FH) Anita Koppensteiner
Research Assistant / Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt D- Protein Production, Purification and Analysis
- Cell-Based Assays/Microscopy
- Biochemical Test Methods and Analysis
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Applied ChemistryBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Life Sciences
-
Die Rolle von NFR2 in der Melanomprogression - Einblicke in die Mechanismen von Metastasen
Department of Life Sciences
-
Extremophiles
Department of Life Sciences
-
MEMESA – Metastasierendes Melanom Spezifische Antikörper
Department of Life Sciences
-
AdsorbTech: Entwicklung einer neuen Technologieplattform für Peptid-basierte therapeutische Apheresesysteme
Department of Life Sciences
-
Etablierung innovativer, vaskulärer Äquivalente zur Entwicklung von Detektionsmodulen für Hochdurchsatz-Verfahren und zur Entwicklung von anti-entzündlichen Peptiden
Department of Life Sciences
-
[657]
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435 -
[600]
Schütz, B., Koppensteiner, A., Schörghofer, D., Kinslechner, K., Timelthaler, G., Eferl, R., Hengstschläger, M., Missbichler, A., Hundsberger, H., & Mikula, M. (2016): Generation of metastatic melanoma specific antibodies by affinity purification. Scientific reports, 6: 37253.
Doi: https://doi.org/10.1038/srep37253 -
[530]
Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316
DI (FH) Anita KoppensteinerKResearch Assistant / Department of Life SciencesProf.(FH) Priv.Doz. Dr. Reinhard Klein
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Virology
- Molecular biology
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
In-Vivo-RNA Interferenzstrategien gegen Adenoviren
Project Leader, Department of Life Sciences
-
Virale und fungale Infektionen
Project Leader, Department of Life Sciences
-
RNA Interferenz als Methode zur Inhibierung von Virusinfektionen
Project Leader, Department of Life Sciences
-
[1639]
Selb, R., Derntl, C., Klein, R., Alte, B., Hofbauer, C., Kaufmann, M., Beraha, J., Schöner, L., & Witte, A. (2017): The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1. Journal of virology, 91(9): e00206-17.
Doi: https://doi.org/10.1128/JVI.00206-17 -
[353]
Derntl, C., Selb, R., Klein, R., Alte, B., & Witte, A. (2015): Genomic manipulations in alkaliphilic haloarchaea demonstrated by a gene disruption in Natrialba magadii. FEMS microbiology letters, 362(21): fnv179.
Doi: https://doi.org/10.1093/femsle/fnv179 -
[1648]
Derntl, C., Selb, R., Klein, R., Alte, B., & Witte, A. (2015): Genomic manipulations in alkaliphilic haloarchaea demonstrated by a gene disruption in Natrialba magadii. FEMS microbiology letters, 362(21): fnv179.
Doi: https://doi.org/10.1093/femsle/fnv179 -
[355]
Bellutti, F., Kauer, M., Kneidinger, D., Lion, T., & Klein, R. (2015): Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. Journal of virology, 89(3): 1608–1627.
Doi: https://doi.org/10.1128/JVI.02336-14 -
[1649]
Bellutti, F., Kauer, M., Kneidinger, D., Lion, T., & Klein, R. (2015): Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. Journal of virology, 89(3): 1608–1627.
Doi: https://doi.org/10.1128/JVI.02336-14 -
[1650]
Ibrišimović, M., Lion, T., & Klein, R. (2013): Combinatorial targeting of 2 different steps in adenoviral DNA replication by herpes simplex virus thymidine kinase and artificial microRNA expression for the inhibition of virus multiplication in the presence of ganciclovir. BMC biotechnology, 13(1): 54.
Doi: https://doi.org/10.1186/1472-6750-13-54 -
[1652]
Mayrhofer-Iro, M., Ladurner, A., Meissner, C., Derntl, C., Reiter, M., Haider, F., Dimmel, K., Rössler, N., Klein, R., Baranyi, U., Scholz, H., & Witte, A. (2013): Utilization of virus φCh1 elements to establish a shuttle vector system for Halo(alkali)philic Archaea via transformation of Natrialba magadii. Applied and environmental microbiology, 79(8): 2741–2748.
Doi: https://doi.org/10.1128/AEM.03287-12 -
[1651]
Ibrišimović, M., Kneidinger, D., Lion, T., & Klein, R. (2013): An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs. Antiviral research, 97(1): 10–23.
Doi: https://doi.org/10.1016/j.antiviral.2012.10.008 -
[1653]
Kneidinger, D., Ibrišimović, M., Lion, T., & Klein, R. (2012): Inhibition of adenovirus multiplication by short interfering RNAs directly or indirectly targeting the viral DNA replication machinery. Antiviral research, 94(3): 195–207.
Doi: https://doi.org/10.1016/j.antiviral.2012.03.011 -
[1654]
Ibrišimović, M., Nagl, U., Kneidinger, D., Rauch, M., Lion, T., & Klein, R. (2012): Targeted expression of herpes simplex virus thymidine kinase in adenovirus-infected cells reduces virus titers upon treatment with ganciclovir in vitro. The journal of gene medicine, 114(1): 3–19.
Doi: https://doi.org/10.1002/jgm.1638 -
[1655]
Klein, R., Rössler, N., Iro, M., Scholz, H., & Witte, A. (2012): Haloarchaeal myovirus φCh1 harbours a phase variation system for the production of protein variants with distinct cell surface adhesion specificities. Molecular microbiology, 83(1): 137–150.
Doi: https://doi.org/10.1111/j.1365-2958.2011.07921.x -
[1656]
Klein, R., Ruttkowski, B., Schwab, S., Peterbauer, T., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2008): Mouse mammary tumor virus promoter-containing retroviral promoter conversion vectors for gene-directed enzyme prodrug therapy are functional in vitro and in vivo. Journal of biomedicine & biotechnology, 2008(683505 ): 10.
Doi: https://doi.org/10.1155/2008/683505 -
[1657]
Agu, C. A., Klein, R., Lengler, J., Schilcher, F., Gregor, W., Peterbauer, T., Bläsi, U., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2007): Bacteriophage-encoded toxins: the lambda-holin protein causes caspase-independent non-apoptotic cell death of eukaryotic cells. Cellular microbiology, 9(7): 1753–1765.
Doi: https://doi.org/10.1111/j.1462-5822.2007.00911.x -
[1658]
Iro, M., Klein, R., Gálos, B., Baranyi, U., Rössler, N., & Witte, A. (2007): The lysogenic region of virus phiCh1: identification of a repressor-operator system and determination of its activity in halophilic Archaea. xtremophiles : life under extreme conditions, 11(2): 383–396.
Doi: https://doi.org/10.1007/s00792-006-0040-3 -
[1660]
Klein, R., Ruttkowski, B., Knapp, E., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2006): WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene, 372: 153–161.
Doi: https://doi.org/10.1016/j.gene.2005.12.018 -
[1661]
Hand, N. J., Klein, R., Laskewitz, A., & Pohlschröder, M. (2006): Archaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation. Journal of bacteriology,, 188(4): 1251–1259.
Doi: https://doi.org/10.1128/JB.188.4.1251-1259.2006 -
[1659]
Agu, C. A., Klein, R., Schwab, S., König-Schuster, M., Kodajova, P., Ausserlechner, M., Binishofer, B., Bläsi, U., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2006): The cytotoxic activity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. The journal of gene medicine, 8(2): 229–241.
Doi: https://doi.org/10.1002/jgm.833 -
[1662]
Mangold, M., Siller, M., Roppenser, B., Vlaminckx, B. J., Penfound, T. A., Klein, R., Novak, R., Novick, R. P., & Charpentier, E. (2004): Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Molecular microbiology, 53(5): 1515–1527.
Doi: https://doi.org/10.1111/j.1365-2958.2004.04222.x -
[1663]
Rössler, N., Klein, R., Scholz, H., & Witte, A. (2004): Inversion within the genome of the haloalkaliphilic virus phiCh1 results in differential expression of structural proteins. Molecular microbiology, 52(2): 413–426.
Doi: https://doi.org/10.1111/j.1365-2958.2003.03983.x -
[1664]
Klein, R., Baranyi, U., Rössler, N., Greineder, B., Scholz, H., & Witte, A. (2002): Natrialba magadii virus fCh: First complete nucleotide sequence and functional organization of a virus infecting an extreme haloalkaliphilic archaeon. Molecular microbiology, 45(3): 851–863.
Doi: https://doi.org/10.1046/j.1365-2958.2002.03064.x -
[1666]
Klein, R., Greineder, B., Baranyi, U., & Witte, A. (2000): The structural protein E of the archaeal virus phiCh1: evidence for processing in Natrialba magadii during virus maturation. Virology, 276(2): 376–387.
Doi: https://doi.org/10.1006/viro.2000.0565 -
[1665]
Baranyi, U., Klein, R., Lubitz, W., Krüger, D. H., & Witte, A. (2000): The archaeal halophilic virus-encoded Dam-like methyltransferase M. phiCh1-I methylates adenine residues and complements dam mutants in the low salt environment of Escherichia coli. Molecular microbiology, 35(5): 1168–1179.
Doi: https://doi.org/10.1046/j.1365-2958.2000.01786.x -
[1667]
Katinger, A., Lubitz, W., Szostak, M. P., Stadler, M., Klein, R., Indra, A., Huter, V., & Hensel, A. (1999): Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. Journal of biotechnology, 73(2-3): 251–260.
Doi: https://doi.org/10.1016/s0168-1656(99)00143-1 -
[1668]
Witte, A., Baranyi, U., Klein, R., Sulzner, M., Luo, C., Wanner, G., Krüger, D. H., & Lubitz, W. (1997): Characterization of Natronobacterium magadii phage phi Ch1, a unique archaeal phage containing DNA and RNA. Molecular microbiology, 23(3): 603–616.
Doi: https://doi.org/10.1046/j.1365-2958.1997.d01-1879.x -
[1669]
Szostak, M. P., Hensel, A., Eko, F. O., Klein, R., Auer, T., Mader, H., Haslberger, A., Bunka, S., Wanner, G., & Lubitz, W. (1996): Bacterial ghosts: non-living candidate vaccines. Journal of biotechnology, 44(1-3): 161–170.
Doi: https://doi.org/10.1016/0168-1656(95)00123-9
Prof.(FH) Priv.Doz. Dr. Reinhard KleinKProfessor Department of Life SciencesProf.(FH) Dr. Christian Klein
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Computer-Aided Drug Design
- Biochemical Systems Theory
- Molecular Modeling and Chemoinformatics
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Applied ChemistryBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Entwicklung von therapeutischen Peptiden für Krebs- und regenerative Medizin
Department of Life Sciences
-
Entwicklung einer Design-Pipeline für innovative Protein-Protein-Interaktionshemmer
Project Leader, Department of Life Sciences
-
Entwicklung neuer immunregulierender Peptide und geschlechtsspezifischer organotypischer Zellmodelle für humane Sepsis
Department of Life Sciences
-
Funktionale Validierung prädiktiver Biomarker für zielgerichtete Krebstherapien
Department of Life Sciences
-
[1788]
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717 -
[1315]
Ablinger, C., Geisler, S. M., Stanika, R. I., Klein, C. T., & Obermair, G. J. (2020): Neuronal α2δ proteins and brain disorders. Pflugers Archiv : European journal of physiology, 472(7): 845-863.
Doi: https://doi.org/10.1007/s00424-020-02420-2 -
[900]
Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
-
[657]
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435 -
[879]
Volk, K., Breunig, S. D., Rid, R., Herzog, J., Bräuer, M., Hundsberger, H., Klein, C., Müller, N., & Önder, K. (2017): Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biological chemistry, 398(1): 125-133.
Doi: https://doi.org/10.1515/hsz-2016-0185 -
[359]
Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7 -
[557]
Jacobi, N., Smolinska, V., Stierschneider, A., Klein, C., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2016): Development of organotypic cancer models for the identification of individualized cancer therapies. In FH des BFI Wien (Hrsg.), Online-Tagungsband FHK Forschungsforum 2016. Wien: FFH.
-
[1819]
Solca, F., Dahl, G., Zoephel, A., Bader, G., Sanderson, M., Klein, C.T., Kraemer, O., Himmelsbach, F., Haaksma, E., Adolf, G. R. (2012): Target Binding Properties and Cellular Activity of Afatinib (BIBW 2992), an Irreversible ErbB Family Blocker. Journal of Pharmacology and Experimental Therapeutics, 343(2): 342-350.
Doi: https://doi.org/10.1124/jpet.112.197756 -
[1818]
Klein, C.T., Kaiser, D., Ecker, G. (2004): 3D Topolgical Distance-Based Descriptors for Use in QSAR and Diversity Analysis. Journal of Chemical Information and Computer Sciences, 44(1): 200-209.
Doi: https://doi.org/10.1021/ci0256236 -
[1817]
Klein, C.T., Kaiser, D., Kopp, S., Chiba, P., Ecker, G. (2002): Similarity-Based SAR as Tool for Early ADME Profiling. Journal of Computer-Aided Molecular Design, 16: 785-793.
Doi: https://doi.org/10.1023/A:1023828527638 -
[1816]
Klein, C.T., Kaiblinger, N., Wolschann, P. (2002): Internally Defined Distances in 3D-Quantitative Structure-Activity Relationships. Journal of Computer-Aided Molecular Design, 16: 79-93.
Doi: https://doi.org/10.1023/A:1016308417830 -
[1812]
Mayer, B., Klein, C.T. (2000): Influence of Solvation on the Helix Forming Tendency of Nonpolar Amino Acids. Journal of Molecular Structure: THEOCHEM, 532(1-3): 213-226.
Doi: https://doi.org/10.1016/S0166-1280(00)00559-5 -
[1815]
Buchbauer, G., Klein, C.T., Wailzer, B., Wolschann, P. (2000): Threshold-Based Structure-Activity Relationships of Pyrazines with Bell Pepper Flavor. Journal of Agricultural and Food Chemistry, 48(9): 4273-4278.
Doi: https://doi.org/10.1021/jf000192h -
[1809]
Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P. (2000): A Method for Estimation of the Free Energies of Complexation between ß-Cyclodextrin and Guest Molecules. Journal of Inclusion Phenomena, 36(4): 409-423.
Doi: https://doi.org/10.1023/A:1008063412529 -
[1813]
Klein, C.T., Pircher, H., Wailzer, B., Buchbauer, G., Wolschann, P. (2000): Quantitative Structure-Property Study on Pyrazines with Bell Peper Flavor. Scientific Pharmaceutica, 68(1): 41-56.
Doi: https://doi.org/10.3797/scipharm.aut-00-04 -
[1811]
Klein, C.T., Lawtrakul, L., Hannongbua, S., Wolschann, P. (2000): Accessible Charges as Sensitive Descriptors in Structure-Activity Relationships. A Study on HEPT-based HIV-1 RT Inhibitors. Scientific Pharmaceutica, 68(1): 25-40.
Doi: https://doi.org/10.3797/scipharm.aut-00-03 -
[1814]
Klein, C.T., Viernstein, H., Wolschann, P. (2000): Free Energy Prediction of Complexation between ß-Cyclodextrin and Guest Molecules: External Predictivity of MR and PLS Models. Scientific Pharamaceutica, 68(1): 15-24.
Doi: https://doi.org/10.3797/scipharm.aut-00-02 -
[1810]
Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P. (2000): Predicting the Free Energies of Complexation between Cyclodextrins and Guest Molecules: Linear versus Nonlinear Models. Pharamaceutical Research, 17: 358-365.
Doi: https://doi.org/10.1023/A:1007565409407 -
[1808]
Mayer, B., Klein, C.T., Köhler, G. (1999): Selective Assembly of Cyclodextrins on Poly(ethylene oxide) Poly(propylene oxide) Copolymers. Journal of Computer-Aided Molecular Design, 13: 373-383.
Doi: https://doi.org/10.1023/A:1008095501870 -
[1807]
Klein, C.T., Mayer, B. (1999): Sources for Switches and Structure Formation in Metabolic Pathways. Biosystems, 51(1): 41-52.
Doi: https://doi.org/10.1016/S0303-2647(99)00012-X -
[1805]
Klein, C.T., Mayer, B., Köhler, G., Wolschann, P. (1998): Systematic Stepsize Variation: An Efficient Method for Searching the Conformational Space of Polypeptides. Journal of Computational Chemistry, 19(13): 1470-1481.
Doi: https://doi.org/10.1002/(SICI)1096-987X(199810)19:13<1470::AID-JCC4>3.0.CO;2-N -
[1806]
Klein, C.T. (1998): Hysteresis-Driven Pattern Formation in Biochemical Networks. Journal of Theoretical Biology, 194(2): 263-274.
Doi: https://doi.org/10.1006/jtbi.1998.0757 -
[1804]
Mayer, B., Marconi, G., Klein, C.T., Köhler, G., Wolschann, P. (1997): Structural Analysis of Host–Guest Systems. Methyl-substituted Phenols in beta;-Cyclodextrin. Journal of inclusion phenomena and molecular recognition in chemistry, 29: 79-93.
Doi: https://doi.org/10.1023/A:1007920606983 -
[1802]
Klein, C.T., Mayer, B. (1997): A Model for Pattern Formation in Gap-Junction Coupled Cells. Journal of Theoretical Biology, 186(1): 107-115.
Doi: https://doi.org/10.1006/jtbi.1996.0337 -
[1803]
Grabner, G., Monti, S., Marconi, G., Mayer, B., Klein, C.T., Köhler, G. (1997): Spectroscopic and Photochemical Study of Inclusion Complexes of Dimethoxybenzenes with Cyclodextrins. The Journal of Physical Chemistry , 100(51): 20068-20075.
Doi: https://doi.org/10.1021/jp962231r -
[1799]
Marconi, G., Mayer, B., Klein, C.T., Köhler, G. (1996): The structure of higher order C60-fullerene-γ-cyclodextrin complexes. Chemical Physics Letters, 260(5-6): 589-594.
Doi: https://doi.org/10.1016/0009-2614(96)00915-3 -
[1801]
Köhler, G., Grabner, G., Klein, C.T., Marconi, G., Mayer, B., Monti, S., Rechthaler, K., Rotkiewicz, K., Viernstein, H., Wolschann, P. (1996): Structure and spectroscopic Properties in Cyclodextrin Inclusion Complexes. In Szejtli, J., Szente, L. (Hrsg.), Proceedings of the Eighth International Symposium on Cyclodextrins (215-220). Budapest, Hungary: Springer, Dordrecht.
Doi: https://doi.org/10.1007/978-94-011-5448-2_46 -
[1800]
Klein, C.T., Mayer, B., Köhler, G., Wolschann, P. (1996): Influence of solvation on helix formation of poly-alanine studied by multiple annealing simulations. Journal of Molecular Structure: THEOCHEM, 372(1): 33-43.
Doi: https://doi.org/10.1016/S0166-1280(96)04745-8 -
[1796]
Klein, C. T., & Seelig, F. F. (1995): Turing structures in a system with regulated gap-junctions. Bio Systems, 35(1): 15–23.
Doi: https://doi.org/10.1016/0303-2647(94)01478-p -
[1797]
Klein, C.T., Mayer, B., Köhler, G., Mraz, K., Reiter, S., Viernstein, H., Wolschann, P. (1995): Solubility and Molecular Modeling of Triflumizole-ß-cyclodextrin Inclusion Complexes. Journal of inclusion phenomena and molecular recognition in chemistry, 22: 15–32.
Doi: https://doi.org/10.1007/BF00706495
Prof.(FH) Dr. Christian KleinKProfessor Department of Life SciencesProf.(FH) DI Bernhard Klausgraber
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Inorganic and Organic Chemistry
- Microbiology
- Fermentation Development and Optimization
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Life Sciences
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Department of Life Sciences
-
Extremophiles
Project Leader, Department of Life Sciences
-
Co-Kultivierung von Mikroorganismen
Department of Life Sciences
-
Etablierung innovativer humaner Tumor-Mimetika für das Screening von bioaktiven Wirkstoffen
Department of Life Sciences
Prof.(FH) DI Bernhard KlausgraberKProfessor Department of Life SciencesProf.(FH) Dr. Barbara Entler
Professor Department of Life Sciences
Institute BiotechnologyLocation
IMC Campus KremsIMC Campus Trakt G- Microbiology
- Microbial Monitoring
- Genetic Engineering
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
-
[675]
Moritz, B., Locatelli, V., Niess, M., Bathke, A., Kiessig, S., Entler, B., Finkler, C., Wegele, H., & Stracke, J. (2017): Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles. Electrophoresis, 38(24): 3136–3146.
Doi: https://doi.org/10.1002/elps.201700145 -
[1826]
Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
-
[622]
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
-
[1823]
Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385
Prof.(FH) Dr. Barbara EntlerEProfessor Department of Life SciencesProf.(FH) Priv. Doz. Mag. Dr. Andreas Eger
Head of Research Institute Krems Bioanalytics / Professor Department of Life Sciences
Institute Krems BioanalyticsLocation
IMC Campus KremsIMC Campus Trakt G- Drug Discovery
- Organotypic Disease Models
- Bioanalytics and Biomarker
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / full-time
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / full-time
-
Stoffwechsel-Plasma-Analyse bei metabolischem Syndrom und Tumorkachexie
Project Leader, Department of Life Sciences
-
DNA Methylierung im Lungenkrebs und ihre geschlechtsspezifische
Auswirkung auf die Effizienz epigenetischer Therapien
Department of Life Sciences
-
Entwicklung von therapeutischen Peptiden für Krebs- und regenerative Medizin
Project Leader, Department of Life Sciences
-
Etablierung der molekularen Toxikologie für rasche, frühzeitige sowie sensitive Toxizitätsbestimmungen und Biokompatibilität
Department of Life Sciences
-
Entwicklung komplexer extrakorporaler Karzinommodelle für die Identifikation personalisierter Krebstherapien
Project Leader, Department of Life Sciences
-
AdsorbTech: Entwicklung einer neuen Technologieplattform für Peptid-basierte therapeutische Apheresesysteme
Department of Life Sciences
-
Entwicklung neuer immunregulierender Peptide und geschlechtsspezifischer organotypischer Zellmodelle für humane Sepsis
Department of Life Sciences
-
Entwicklung neuer Methoden zur Verbesserung von immuntherapeutischen Verfahren in der Onkologie
Project Leader, Department of Life Sciences
-
Funktionale Validierung prädiktiver Biomarker für zielgerichtete Krebstherapien
Project Leader, Department of Life Sciences
-
Etablierung innovativer humaner Tumor-Mimetika für das Screening von bioaktiven Wirkstoffen
Project Leader, Department of Life Sciences
-
[1788]
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717 -
[895]
Jacobi, N., Seeboeck, R., Hofmann, E., Schweiger, H., Smolinska, V., Mohr, T., Boyer, A., Sommergruber, W., Lechner, P., Pichler-Huebschmann, C., Önder, K., Hundsberger, H., Wiesner, C., & Eger, A. (2017): Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget, 8(64): 107423–107440.
Doi: https://doi.org/10.18632/oncotarget.22475 -
[900]
Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
-
[896]
Jacobi, N., Seeboeck, R., Hofmann, E., & Eger, A. (2017): ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers, 9(4): 33.
Doi: https://doi.org/10.3390/cancers9040033 -
[657]
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435 -
[359]
Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7 -
[557]
Jacobi, N., Smolinska, V., Stierschneider, A., Klein, C., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2016): Development of organotypic cancer models for the identification of individualized cancer therapies. In FH des BFI Wien (Hrsg.), Online-Tagungsband FHK Forschungsforum 2016. Wien: FFH.
-
[360]
Herzog, J., Rid, R., Wagner, M., Hundsberger, H., Eger, A., Bauer, J., & Önder, K. (2015): Whole-transcriptome gene expression profiling in an epidermolysis bullosa simplex Dowling-Meara model keratinocyte cell line uncovered novel, potential therapeutic targets and affected pathways. BMC research notes, 8: 785.
Doi: https://doi.org/10.1186/s13104-015-1783-7 -
[553]
Kreiseder, B., Holper-Schichl, Y. M., Muellauer, B., Jacobi, N., Pretsch, A., Schmid, J. A., de Martin, R., Hundsberger, H., Eger, A., & Wiesner, C. (2015): Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PloS one, 10(3): e0119402.
Doi: https://doi.org/10.1371/journal.pone.0119402 -
[536]
Bakiri, L., Macho-Maschler, S., Custic, I., Niemiec, J., Guío-Carrión, A., Hasenfuss, S. C., Eger, A., Müller, M., Beug, H., & Wagner, E. F. (2015): Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression. Cell death and differentiation, 22(2): 336–350.
Doi: https://doi.org/10.1038/cdd.2014.157 -
[498]
Spilka, R., Ernst, C., Bergler, H., Rainer, J., Flechsig, S., Vogetseder, A., Lederer, E., Benesch, M., Brunner, A., Geley, S., Eger, A., Bachmann, F., Doppler, W., Obrist, P., & Haybaeck, J. (2014): eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation. Cellular oncology (Dordrecht), 37(4): 253–267.
Doi: https://doi.org/10.1007/s13402-014-0181-9 -
[535]
Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P., & Wiesner, C. (2014): Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS one, 9(6): e97929.
Doi: https://doi.org/10.1371/journal.pone.0097929 -
[534]
Kapuścik, A., Hrouzek, P., Kuzma, M., Bártová, S., Novák, P., Jokela, J., Pflüger, M., Eger, A., Hundsberger, H., Kopecký, J. (2013): Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chembiochem : a European journal of chemical biology, 14(17): 2329-2337.
Doi: https://doi.org/10.1002/cbic.201300246 -
[533]
Rid, R., Herzog, J., Maier, R. H., Hundsberger, H., Eger, A., Hintner, H., Bauer, J. W., Onder, K. (2013): Real-time monitoring of relative peptide-protein interaction strengths in the yeast two-hybrid system. Assay and drug development technologies, 11(4): 269-275.
Doi: https://doi.org/10.1089/adt.2012.496 -
[530]
Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316 -
[532]
Imhof, M., Karas, I., Gomez, I., Eger, A., & Imhof, M. (2013): Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression. Drug discovery today, 18(1-2): 35-42.
Doi: https://doi.org/10.1016/j.drudis.2012.07.010 -
[529]
Maier, C., Maier, R., Rid, R., Trost, A., Hundsberger, H., Eger, A., Hintner, H., Bauer, J., Onder, K. (2012): PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling. BMC molecular biology, 13: 18.
Doi: https://doi.org/10.1186/1471-2199-13-18 -
[528]
Vonach, C., Viola, K., Giessrigl, B., Huttary, N., Raab, I., Kalt, R., Krieger, S., Vo, T. P., Madlener, S., Bauer, S., Marian, B., Hämmerle, M., Kretschy, N., Teichmann, M., Hantusch, B., Stary, S., Unger, C., Seelinger, M., Eger, A., Mader, R., Jäger, W., Schmidt, W., Grusch, M., Dolznig, H., Mikulits, W., Krupitza, G. (2011): NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells. British journal of cancer, 105(2): 263-271.
Doi: https://doi.org/10.1038/bjc.2011.194 -
[527]
Amatschek, S., Lucas, R., Eger, A., Pflueger, M., Hundsberger, H., Knoll, C., Grosse-Kracht, S., Schuett, W., Koszik, F., Maurer, D., Wiesner, C. (2011): CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. British journal of cancer, 104(3): 469-479.
Doi: https://doi.org/10.1038/sj.bjc.6606056 -
[526]
Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., Hlubek, F., Jung, A., Strand, D., Eger, A., Kirchner, T., Behrens, J., & Brabletz, T. (2008): The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer research, 68(2): 537–544.
Doi: https://doi.org/10.1158/0008-5472.CAN-07-5682 -
[525]
Mikula M., Lahsnig C., Fischer A. N. M., Proell V., Huber H, Fuchs E., Eger A., Beug H. and Mikulits W. (2007): Epithelial plasticity of hepatocytes during liver tumor progression. Stem cells and their potential for clinical application. NATO Science for Peace and Security. Series/NATO Science Foundation. Springer Netherland, Edition 1.
-
[523]
Aigner, K., Dampier, B., Descovich, L., Mikula, M., Sultan, A., Schreiber, M., Mikulits, W., Brabletz, T., Strand, D., Obrist, P., Sommergruber, W., Schweifer, N., Wernitznig, A., Beug, H., Foisner, R., & Eger, A. (2007): The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26(49): 6979–6988.
Doi: https://doi.org/10.1038/sj.onc.1210508 -
[524]
Aigner, K., Descovich, L., Mikula, M., Sultan, A., Dampier, B., Bonné, S., van Roy, F., Mikulits, W., Schreiber, M., Brabletz, T., Sommergruber, W., Schweifer, N., Wernitznig, A., Beug, H., Foisner, R., & Eger, A. (2007): The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS letters, 581(8): 1617-24.
Doi: https://doi.org/10.1016/j.febslet.2007.03.026 -
[507]
Pacher, M., Seewald, M. J., Mikula, M., Oehler, S., Mogg, M., Vinatzer, U., Eger, A., Schweifer, N., Varecka, R., Sommergruber, W., Mikulits, W., & Schreiber, M. (2007): Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis, 28(1): 49-59.
Doi: https://doi.org/10.1093/carcin/bgl091 -
[506]
Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., Jung, A., Kirchner, T., & Brabletz, T. (2006): A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131(3): 830–840.
Doi: https://doi.org/10.1053/j.gastro.2006.06.016 -
[505]
Stary, M., Pasteiner, W., Summer, A., Hrdina, A., Eger, A., & Weitzer, G. (2005): Parietal endoderm secreted SPARC promotes early cardiomyogenesis in vitro. Experimental cell research, 310(2): 331-43.
Doi: https://doi.org/10.1016/j.yexcr.2005.07.013 -
[496]
Eger, A., Mikulits, W. (2005): Models of Epithelial to Mesenchymal Transition. Drug Discovery Today: Disease Models, 2(1): 57-63.
Doi: https://doi.org/10.1016/j.ddmod.2005.04.001 -
[495]
Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., Berx, G., Cano, A., Beug, H., & Foisner, R. (2005): DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14): 2375-85.
Doi: https://doi.org/10.1038/sj.onc.1208429 -
[494]
Eger, A., Stockinger, A., Park, J., Langkopf, E., Mikula, M., Gotzmann, J., Mikulits, W., Beug, H., & Foisner, R. (2004): β-catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene, 23(15): 2672-2680.
Doi: https://doi.org/10.1038/sj.onc.1207416 -
[493]
Gotzmann, J., Mikula, M., Eger, A., Schulte-Hermann, R., Foisner, R., Beug, H., & Mikulits, W. (2004): Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutation research, 566(1): 9–20.
Doi: https://doi.org/10.1016/s1383-5742(03)00033-4 -
[492]
Stockinger, A., Eger, A., Wolf, J., Beug, H., & Foisner, R. (2001): E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. The Journal of cell biology, 154(6): 1185–1196.
Doi: https://doi.org/10.1083/jcb.200104036 -
[491]
Eger A. and Foisner R. (2000): Dynamic and cross talk of junctional proteins: a molecular basis for the regulation of cell adhesion and epithelial polarity. Protoplasma, 211(3-4): 125-133.
-
[490]
Eger, A., Stockinger, A., Schaffhauser, B., Beug, H., & Foisner, R. (2000): Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. The Journal of cell biology, 148(1): 173-188.
Doi: https://doi.org/10.1083/jcb.148.1.173 -
[489]
Gotzmann, J., Eger, A., Meissner, M., Grimm, R., Gerner, C., Sauermann, G., & Foisner, R. (1997): Two-dimensional electrophoresis reveals a nuclear matrix-associated nucleolin complex of basic isoelectric point. Electrophoresis, 18(14): 2645–2653.
Doi: https://doi.org/10.1002/elps.1150181421 -
[488]
Eger, A., Stockinger, A., Wiche, G., & Foisner, R. (1997): Polarisation-dependent association of plectin with desmoplakin and the lateral submembrane skeleton in MDCK cells. Journal of cell science, 110: 1307-1316.
Prof.(FH) Priv. Doz. Mag. Dr. Andreas EgerEHead of Research Institute Krems Bioanalytics / Professor Department...
Application and admissions – the next steps
You've found a course that's a perfect fit? Great – you’ve already taken the most important step! We’ve put together an overview to guide you through the next steps.
Admission requirements
We'll be happy to inform you about the requirements you have to meet in order to apply.
Admissions procedure
Preparation is everything – read up on the admissions procedure in detail.
Important dates and deadlines
What deadlines do you need to keep an eye on for your online application? Get an overview.
Apply online
You've decided for one of our degree programmes? First of all: congratulations and thank you for choosing us! We’ll be happy to guide you step-by-step through your online application.
Study-relevant dates
You would like to plan ahead and would like to know when your degree programme starts? Here you will find the answer!
Admission requirements
What are the admission requirements for master programmes?
To qualify for a master programme, you must have completed a bachelor degree – with a workload of at least 180 ECTS and lasting at least six semesters – in a related subject, or hold an equivalent degree from a recognised Austrian or foreign higher education institution.
If your undergraduate studies are not sufficiently relevant, for instance if you’ve completed a degree in an unrelated subject, your qualifications will be assessed after we have received your completed application.
Information about accepted previous academic qualifications
What proof of your language skills is required for our English-language master degree programme?
We’ll assess your English language proficiency at your interview, so there is no need to provide additional evidence of your English skills.
Admissions procedure
Application interview
Everything revolves around the students on our master programmes. That’s why we’d like to get to know you personally. At your application interview, you will take part in a dialogue with two members of the relevant university department.
During the interview, conducted in the language of instruction of the programme, you’ll talk about aspects such as your current skillset and why you want to take the programme.
The interviewers will pay particular attention to your professional experience, your methods-based and language skills, and your general suitability for your selected master degree programme.
Tip
We can also interview you via Skype for our master programmes. Please indicate your preference when you complete the online application.
Interview dates
There is usually a selection of dates to choose from, with quotas allocated for each date. You can select a preferred date and time slot for your admission interview during the online application process. In order to still benefit from the full selection of dates, we recommend that you submit your application in good time.
Get an overview of the dates for your programme.
After you have successfully completed your online application, your application will be checked for completeness and correctness. As soon as this process is completed, we will inform you by e-mail and confirm the date for your admission interview. We will send you the Microsoft Teams Meeting Link in a separate e-mail a few days before the application interview date.
Questions about the degree programme?
Prospective Student Advisory Service
Do you have questions regarding the entry requirements, the admission procedure and more? Our Prospective Student Advisory Service is happy to help.
Similar degree programmes

Digital Business Innovation and Transformation
With the Digital Business Innovation and Transformation master degree, you will be qualified to manage digital transformation across multiple industries.